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a b s t r a c t

The problem of controller synthesis with the objective of stabilizing a continuous stirred tank reactor
(CSTR) with arbitrary switching between two modes, is considered. First, based on the new concept of
modal state feedback linearization, two nonlinear state feedback laws and a nonlinear state transforma-
ccepted 4 September 2009

eywords:
witched systems
ontinuous stirred tank reactor
rbitrary switching

tion are synthesized. The advantage of this step is to transform the switched nonlinear model of the CSTR
to an equivalent switched linear system without any approximation. In the second step, a stabilizing con-
troller is designed for the switched linear system using the common Lyapunov function theory. Although
it is proven that the process is globally stabilized with the designed controller, the performance of the
controller is also shown in simulation. This paper illustrates the possibility of simplifying the procedure

r swi
eedback linearization
tabilization

of designing controller fo

. Introduction

Many chemical processes include discontinuous actuators,
hysical constraints or manufacturing distinct phases such as,
lling/emptying a reactor or heating/cooling a product (see for
xample [1–5]). Drastic, instantaneous changes in a continuous
ehavior of a process, caused by such factors, can be modelled more
onveniently as discrete events. In many cases, discrete and contin-
ous dynamics of the process interact to such a significant extent
hat they cannot be decoupled effectively. This characteristic would
omplicate the modelling, analysis and design of such processes.

Hybrid system framework is general enough to model processes
here the behavior of interest is determined by interacting contin-
ous and discrete dynamics and state jumps [6]. Switched systems
re a special class of hybrid systems. A switched system consists of
everal subsystems (modes) and a switching signal that specifies
he active subsystem at each time instant. Switched systems can
e categorize as switched linear systems (SLSs) and switched non-

inear systems (SNSs). It should be noted that even an SLS which
onsists of linear subsystems is a nonlinear system. Research on
witched systems has been an active field during recent years. For
survey on switched systems we refer to [1,7–11].
The control of switched systems is a challenging issue. Moti-
ated by stability analysis and stabilization of switched systems,
any interesting problems have been investigated in recent years

8,10]. One of these problems is the stabilization of a switched sys-

∗ Corresponding author. Tel.: +98 21 77240265; fax: +98 21 77240490.
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385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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tched nonlinear processes, using the modal state feedback method.
© 2009 Elsevier B.V. All rights reserved.

tem under arbitrary switching signal. It is well established [8,10]
that if a common Lyapunov function (CLF) exists for the constituent
systems of a switched system, then the system is asymptotically
stable under arbitrary switching signal.

Much of the recent research on the stability of SLSs under
arbitrary switching signal is concerned with obtaining verifiable
conditions that guarantee the existence of a CLF for constituent lin-
ear systems. Some mature results in this area have been presented
(see [10] and references there in). For SNSs, however, there are only
some limited results on the similar issue [12–14], and this problem,
in general, is yet far from understood.

Continuous stirred tank reactors (CSTRs) are known to be one of
the systems that exhibit complex behavior. Previously, linear con-
trol approaches which are derived on the basis of linearized models
of the process have been applied to CSTRs [15–17]. However, CSTRs
are difficult to control effectively using linear techniques due to
their inherent nonlinear behavior. The other source of complexity
is that it is often desirable to operate CSTRs in an open-loop unsta-
ble region due to the suitable reaction behavior there. Therefore,
nonlinear design tools such as feedback linearization have been
used to provide global stabilization [18,19]. Also, various auxiliary
solutions have been proposed to overcome inherent drawbacks of
the feedback linearization approach. In particular, state observers
have been designed to estimate non-measurable states [20–23].
Also robust techniques have been utilized to reduce the effect of

parameter uncertainties [24–26]. Moreover, input constraints and
multivariable behavior of CSTRs, encourage the utilization of other
advanced controllers (see, e.g., [27–31]).

In this paper, we consider a CSTR with a hybrid behavior
as a case study. It can be modelled as an SNS. Although many

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:mbarkhordary@iust.ac.ir
dx.doi.org/10.1016/j.cej.2009.09.008
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Nomenclature

a0, a1, a2 constant coefficients
A system matrix
b input vector
B input matrix
CA reactant A concentration (mol L−1)
Cp heat capacity of the fluid (J g−1K−1)
E activation energy (J mol−1)
k0 reaction rate constant (min−1)
q feed flow rate (L min−1)
R gas constant (J mol−1K−1)
t time (min)
T reactor temperature (K)
Tc coolant temperature (K)
u switched nonlinear system input
UA heat transfer constant (J min−1K−1)
v switched linear system input
V volume of the reactor (L)
x1, x2 switched nonlinear system states
z1, z2 switched linear system states

Greek letters
�H enthalpy of the reaction (J mol−1)
� density of the fluid (g L−1)
�A linear system with A matrix

Superscripts/subscripts
* nominal operating conditions
0 initial conditions
e equilibrium
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Fig. 1. Schematic diagram of the process.

Table 1
Nominal parameters of the process [37].

V (L) 100
� (g L−1) 1000
Cp (J g−1K−1) 0.239
�H (J mol−1) −5 × 104

E/R (K) 8750
k0 (min−1) 7.2 × 1010

UA (J min−1K−1) 5 × 104

a0 = k0 7.2 × 1010

the model. Instead, it is assumed that the position of the selector
valve is determined by an arbitrary signal and this signal which
determines the mode of the reactor is known at each time.

Table 2
f feed stream index
i mode index

dvanced control techniques have been developed for CSTRs, none
f them can deal effectively with a CSTR which has a switched
odel. The stabilization of SNSs is still a challenging problem

nd only some limited results have been reported in the litera-
ure, such as [32–36]. The main contribution of this work is to
emonstrate the development of the modal feedback lineariza-
ion technique, introduced in [36], for a CSTR with two modes.

odal feedback linearization will be utilized to transform the
witched nonlinear model of the process to an equivalent switched
inear model without resorting to any approximation. Then a con-
rol law will be designed based on the resulted switched linear

odel to provide global stabilization under arbitrary switching sig-
al.

The outline of the paper is as follows: The process model is
resented in Section 2. In Section 3 the theoretical problem is
ormulated and solved. Simulation results are illustrated and dis-
ussed in Section 4. Finally, a conclusion is drawn in Section 5.

. Process description

The process is shown schematically in Fig. 1. It consists of a con-
tant volume CSTR fed by a single inlet stream through a selector
alve which is connected to two different source streams. Suppose
hat the position of the selector valve at each time is determined by
supervisory mechanism based on an objective. In other words, at

ach time the reactor is fed by one of the source streams according
o the decision made by the supervisor. Since the source streams
ave different parameters, the parameters of the feed of the reac-
or change instantaneously and the reactor will have two operating

odes. In the reactor an exothermic, irreversible reaction of the
a1 = �H
�Cp

k0 −1.506 × 1013

a2 = UA
V�Cp

2.092

form A → B occurs. The reactor is cooled by a coolant stream with
a constant flow rate and a variable temperature Tc .

2.1. Mathematical model

Assuming constant liquid volume, negligible heat losses, per-
fectly mixing and a first-order reaction in reactant A, the CSTR
at each operating mode is described by the following differential
equations:

ĊA = qi

V

(
CAfi − CA

)
− a0 exp

(
− E

RT

)
CA,

Ṫ = qi

V

(
Tfi − T

)
− a1 exp

(
− E

RT

)
CA + a2 (Tc − T) .

(1)

These equations and the nominal values of the parameters which
can be found in Table 1 are described in [37]. As stated above, the
reactor has two modes with respect to the feeding stream. The
parameters which are considered for the feed streams are indi-
cated in Table 2. The nominal operating conditions corresponding
to an unstable equilibrium point are T∗

c = 300 K, C∗
A = 0.5 mol/L and

T∗ = 350 K for both modes.
In this paper, the supervisory mechanism is not considered in
Parameters of the feed stream.

mode q(L min−1) CAf (mol L−1) Tf (K)

1 50 1.5 350
2 200 0.75 350
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Defining the states x1 = CA − C∗
A, x2 = T − T∗ and the control

nput u = Tc − T∗
c , system (1) can be written in the form of SNS

˙x1 = f i
1 (x1, x2) + gi

1 (x1, x2) u,

˙x2 = f i
2 (x1, x2) + gi

2 (x1, x2) u,
(2)

ith i ∈ {1, 2}, and

i
1 = qi

V

(
CAfi − C∗

A − x1
)

− a0
(

x1 + C∗
A

)
exp

(
− E/R

x2 + T∗

)
, (2a)

i
2 = qi

V

(
Tfi − T∗ − x2

)
− a1 exp

(
− E/R

x2 + T∗

)(
x1 + C∗

A

)

+ a2
(

T∗
C − x2 − T∗) , (2b)

i
1 = 0, (2c)

nd

i
2 = a2. (2d)

n the SNS (2) the discrete state value, i, represents the arbitrary
ignal which determines the position of the selector valve or equiv-
lently the reactor mode.

.2. Control objective

Suppose that the values of system states, T and CA, and the dis-
rete state value which is the selector valve position, are available
t each time. The control objective is to regulate CA and T to their
ominal values by manipulating Tc under an arbitrary switching of
he selector valve position.

It is well established that the stability of individual modes do
ot guarantee the stability of a switched system under arbitrary
witching [9]. Therefore, the design of a stabilizing controller for
ach mode is not sufficient to fulfill our control objectives. Auxiliary
echniques should be developed to guarantee the stability under
rbitrary switching signal.

. Theory and design

In this section, the design of a stabilizing controller is presented
or the switched nonlinear model of the CSTR process described in
ection 2. The design consists of two main stages. In the first stage,
ased on the new concept of modal state feedback linearization
36], the SNS is transformed into an equivalent SLS. Then, in the
econd stage, a stabilizing controller is designed for the equivalent
LS. The final control law is calculated by combining the results of
hese two stages.

.1. Modal state feedback linearization

There are mature results for some of the stabilizing problems
onsidering SLSs, while most of the similar problems considering
NSs remain unsolved [10,38,32]. For SNSs, however, modal state
eedback linearization could be a useful concept. This approach is
pplicable to the modal state feedback linearizable systems.

efinition 1. Consider an input affine SNS

˙ = f i(x) + gi(x) u, (3){ }

here i ∈ I = 1, . . . , M is the subsystems’ index and gi (xe) /= 0,
i ∈ I. We assume that (xe, ue) = (0, 0) is the common equilibrium
oint for all the subsystems. The SNS (3) is said to be locally modal
tate feedback linearizable, if there exist a locally diffeomorphism
tate transformation z = T(x), where T(0) = 0, and smooth function
cal Engineering Journal 155 (2009) 838–843

pairs (f i
x(x), gi

x(x)) with f i
x(0) = 0, gi

x(0) /= 0, ∀i ∈ I, defining for each
subsystem a state feedback

u = −f i
x + v
gi

x

, (4)

such that the closed-loop system in z coordinates becomes

ż = Aiz + Biv, (5)

where (5) is a controllable SLS in the sense of [39].
The motivating ideas behind both the modal state feedback lin-

earization and the conventional state feedback linearization [40]
are almost similar. However, due to some basic differences, similar
techniques cannot be applied to these two problems [36]. Find-
ing the modal state feedback linearizability conditions, in a general
case, is an open problem. This problem is formulated and solved for
some classes of second-order SNSs in [36]. One of these classes is
the SNS (3) which can be represented by the model{

ẋ1 = pi
1f11 (x1) + pi

2f12 (x1, x2)

ẋ2 = f i
2 (x1, x2) + gi

2 (x1, x2) u
(6)

where pi
1, pi

2 ∈R are parameters of the system and f11 and f12 are
linearly independent.

Consider the switched nonlinear model of the process in Section
2. This model can be represented as (6) with pi

1 = −qi/V , pi
2 = 1,

f11 = x1, and

f12 = qi

V

(
CAfi − C∗

A

)
− a0 exp

(
− E/R

x2 + T∗

)(
x1 + C∗

A

)
.

Then, following [36] Theorem 3 and Corollary 2, it can be easily
shown that the switched nonlinear model of the process is locally
modal state feedback linearizable with

[
z1
z2

]
=

⎡
⎣ x1

qi

V

(
CAfi − C∗

A

)
− a0 exp

(
− E/R

x2 + T∗

)(
x1 + C∗

A

)
⎤
⎦ (7)

as a diffeomorphism transformation and the state feedback (4) with

f i
x = −a0 exp

(
− E/R

x2 + T∗

)
×[

qi

V

(
CAfi − C∗

A − x1

)
− a0

(
x1 + C∗

A

)
exp

(
− E/R

x2 + T∗

)]

−a0 exp

(
− E/R

x2 + T∗

)(
E/R

(x2 + T∗)2

)(
x1 + C∗

A

)
×[

qi

V

(
Tfi − T∗ − x2

)
− a1

(
x1 + C∗

A

)
exp

(
− E/R

x2 + T∗

)
− a2 (T∗

c − x2 − T∗)

]
(8)

and

g1
x = g2

x = −a0a2

(
E/R

(x2 + T∗)2

)
exp

(
− E/R

x2 + T∗

)
. (9)

The diagram of the proposed control system is presented in Fig. 2.
Applying the state feedbacks and the state transformation, result
in

�1 :

{
ż1 = 0.5z1 + z2
ż2 = u

; �2 :

{
ż1 = 2z1 + z2
ż2 = u

, (10)

where (10) is a controllable SLS.

3.2. Stabilizing control law
As mentioned in Section 2, the control objective is to regulate
states of the process to the desired equilibrium point under arbi-
trary switching of the selector valve. It can be easily verified that,
if the resulted SLS in Section 3.1 is asymptotically stabilized under
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ig. 2. Diagram for the control system. (1) CSTR process with two modes, (2) the S
he SLS.

rbitrary switching signal, the process will be stabilized and con-
equently the control objective will be met.

Many approaches to the problem of stability of SLSs under
rbitrary switching signal rely on the construction of common
uadratic [10,41,42] or non-quadratic [43–45] Lyapunov functions
or the constituent subsystems. In spite of the fact that the quadratic
yapunov function as a special structure for Lyapunov function may
imit the results, the simplicity that this form provides encourages

any researchers to focus on it. The following theorem is useful for
ur case.

heorem 2. [41]. Let A1 and A2 be Hurwitz matrices in R2×2. Then
wo LTI systems �A1 and �A1 have a common quadratic Lyapunov
unction (CQLF) if and only if the matrices A1A2 and A1A−1

2 do not

ave real negative eigenvalues.

Theorem 2 provides a simply verifiable, necessary and sufficient
ondition for the existence of a CQLF for a pair of second order LTI
ystem. In our case, we can design linear controllers to satisfy the

ig. 3. States and control trajectories for [CA0, T0] = [0.9, 340] (solid lines), [CA0, T0] = [0.7
ignal.
ulted from the modal state feedback linearization, (3) the stabilizing controller for

theorem’s condition. Considering state feedback controllers

v1 = −k11z1 − k12z2, (11)

v2 = −k21z1 − k22z2, (12)

the closed-loop subsystems become

A1c =
[

0.5 1
−k11 −k12

]
,

A2c =
[

2 1
−k21 −k22

]
.

A1c and A2c have a CQLF if and only if these two matrices are Hurwitz
and all of the eigenvalues of A1cA2c and A1cA−1

2c are complex or real

positive. These conditions can be formulated as a set of inequalities
which constrain the state feedback gains. Some of these inequalities
are nonlinear and their explicit solving is impossible. However, it
is possible to find sets of state feedback gains which satisfy all the
inequalities. For example, k11 = 3, k12 = 3, k21 = 8 and k22 = 3 is

, 310] (dash–dot lines), [CA0, T0] = [0.4, 360] (dash lines) for an arbitrary switching
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] = [0.9, 340] and under two different arbitrary switching signals.
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Fig. 4. States and control trajectories for initial states [CA0, T0

ur choice for the simulation. These gains guarantee that the SLS
nd consequently the SNS become globally stable under arbitrary
witching signal.

. Results and discussion

The closed-loop system, which is shown in Fig. 2, consists of the
ynamics of the CSTR, the modal linearizing and the linear stabi-

izing control laws which have been designed in Sections 3.1 and
.2. According to the theories which have been presented in Sec-
ion 3, the designed controller under arbitrary switching signal and
rom arbitrary initial condition, steer the states of the process to the
esired point, [0.5,350]. Moreover, at steady state, the temperature
f the coolant stream is the desired value, which is 300 K in this sim-
lation. Here we present the simulation results for some arbitrary

nitial conditions and switching signals to illustrate the behavior of
he controlled system.

Fig. 3 shows the convergence of the states and the control signal
o the desired values using three different initial conditions. It can
e seen that at switching instances the convergence behavior varies
lightly. But in a general sense, the controlled system remains sta-
le under the illustrated switching signal. Fig. 4 shows the state
volution of the system for two other switching signals. Different
witching signals results in different transient behaviors but the
ontrol objectives are satisfied in both the cases.

Note that in practice, the physical constraints of the system that
imit the behavior of the system should be take into account. For
xample, the admissible range for coolant stream temperature is
imited in practice. This range is assumed to be 270 K < Tc < 380 K
n our simulation. According to this constraint, the initial values of
he reactor temperature and the concentration of species A in the
eactor should be limited to prevent actuator saturation.

It may be useful to note that in Section 3.2, the state feedbacks

re designed in such a way that guarantee the existence of a CQLF.
or the state feedback gains which have been presented in Section
.2, the function

9z2
1 + 10z1z2 + 2z2

2

Fig. 5. Level curves of the common quadratic Lyapunov function (dash lines); state
trajectories, from three different initial conditions and under a switching signal,
which cross these curves.

is a CQLF. The level curves of this Lyapunov function are depicted
in Fig. 5. Also, the state trajectories of the controlled system are
illustrated using three different initial values and under an arbitrary
switching signal. It can be seen that the trajectories cross the level
sets such that the Lyapunov function value is always decreasing
along the trajectories.

5. Conclusions

In this paper, a hybrid multi-loop controller design technique
was developed for stabilizing a CSTR with a switched nonlinear
dynamic. The inner loop was designed based on the new concept
of modal state feedback linearization to construct an equivalent
switched linear model for the system. The outer loop is a switched

linear controller which guarantees global stability despite arbitrary
switching of the CSTR modes, using the construction of a CQLF. Con-
vergence of the process states to the desired values under arbitrary
mode transitions was illustrated by simulation.
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The main advantage of this technique is to simplify the pro-
edure of designing a controller for an SNS. Unlike most of the
xisting approaches for stabilization of SNSs which leads to some
hallenging problems such as constructing Lyapunov functions for
onlinear dynamics [33–35] or estimating the region of attraction
32], this method reduces the problem of stabilization of an SNS
o the stabilization of an SLS. The main limiting issue is that the
tate transformation should be identical for all subsystems. This fact
estricts the application of our concept to second-order systems at
his time. Extending the method to higher order and less restricted
lass of SNSs is the subject of future research. Also, additional work
s required for the investigation of the effectiveness of the modal
eedback linearization technique for other problems such as the
tabilization of processes with more than two subsystems or with
he tracking problem.
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